The impact of rising sea temperatures on an Arctic top predator, the narwhal

Author:

Chambault P.,Tervo O. M.,Garde E.,Hansen R. G.,Blackwell S. B.ORCID,Williams T. M.,Dietz R.,Albertsen C. M.ORCID,Laidre K. L.,Nielsen N. H.,Richard P.,Sinding M. H. S.ORCID,Schmidt H. C.,Heide-Jørgensen M. P.ORCID

Abstract

AbstractArctic top predators are expected to be impacted by increasing temperatures associated with climate change, but the relationship between increasing sea temperatures and population dynamics of Arctic cetaceans remains largely unexplored. Narwhals (Monodon monoceros) are considered to be among the most sensitive of Arctic endemic marine mammals to climate change due to their limited prey selection, strict migratory patterns and high site fidelity. In the context of climate change, we assume that the population dynamics of narwhals are partly influenced by changes in environmental conditions, with warm areas of increasing sea temperatures having lower abundance of narwhals. Using a unique large dataset of 144 satellite tracked narwhals, sea surface temperature (SST) data spanning 25 years (1993–2018) and narwhal abundance estimates from 17 localities, we (1) assessed the thermal exposure of this species, (2) investigated the SST trends at the summer foraging grounds, and (3) assessed the relationship between SST and abundance of narwhals. We showed a sharp SST increase in Northwest, Mideast and Southeast Greenland, whereas no change could be detected in the Canadian Arctic Archipelago (CAA) and in the Greenland Sea. The rising sea temperatures were correlated with the smallest narwhal abundance observed in the Mideast and Southeast Greenland (< 2000 individuals), where the mean summer sea temperatures were the highest (6.3 °C) compared to the cold waters of the CAA (0.7 °C) that were associated with the largest narwhal populations (> 40,000 individuals). These results support the hypothesis that warming ocean waters will restrict the habitat range of the narwhal, further suggesting that narwhals from Mideast and Southeast Greenland may be under pressure to abandon their traditional habitats due to ocean warming, and consequently either migrate further North or locally go extinct.

Funder

Carlsbergfondet

Pinngortitaleriffik

Danish Cooperation for the Environment in the Arctic (DANCEA), Danish Centre for Environment and Energy, Environmental Agency for Mineral Resource Activities of the Government of Greenland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3