A study of triple-mass diffusion species and energy transfer in Carreau–Yasuda material influenced by activation energy and heat source

Author:

Sohail Muhammad,Nazir Umar,El-Zahar Essam R.,Alrabaiah Hussam,Kumam Poom,Mousa Abd Allah A.,Sitthithakerngkiet Kanokwan,Park Choonkil

Abstract

AbstractThe mechanism of thermal transport can be enhanced by mixing the nanoparticles in the base liquid. This research discusses the utilization of nanoparticles (tri-hybrid) mixture into Carreau–Yasuda material. The flow is assumed to be produced due to the stretching of vertical heated surface. The phenomena of thermal transport are modeled by considering Joule heating and heat generation or absorption involvement. Additionally, activation energy is engaged to enhance heat transfer rate. The mathematical model composing transport of momentum, heat and mass species is developed in Cartesian coordinate system under boundary layer investigation in the form of coupled nonlinear partial differential equations. The complex partial differential equations are converted into coupled nonlinear ordinary differential equations by using the appropriate similarity transformation. The conversion of PDEs into ODEs make the problem easy to handle and it overcome the difficulties to solve the PDEs. The transformed ordinary differential equations are solved with the help of help of finite element scheme. The obtained solution is plotted against numerous involved parameters and comparative study is established for the reliability of method and accuracy of obtained results. An enhancement in fluid temperature is recorded against magnetic parameter and Eckert number. Also, decline in velocity is recorded for Weissenberg number and concentration is controlled against higher values of Schmidt number. Furthermore, it is recommended that the finite element scheme can be implemented to handle complex coupled nonlinear differential equation arising in modeling of several phenomena occurs in mathematical physics.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3