Apelin-13 in septic shock: effective in supporting hemodynamics in sheep but compromised by enzymatic breakdown in patients

Author:

Coquerel David,Lamoureux Julie,Chagnon Frédéric,Trân Kien,Sage Michael,Fortin-Pellerin Etienne,Delile Eugénie,Sainsily Xavier,Fournier Justin,Dumont Audrey-Ann,Auger-Messier Mannix,Sarret Philippe,Marsault Eric,Praud Jean-Paul,Fülöp Tamàs,Lesur Olivier

Abstract

AbstractSepsis is a prevalent life-threatening condition related to a systemic infection, and with unresolved issues including refractory septic shock and organ failures. Endogenously released catecholamines are often inefficient to maintain blood pressure, and low reactivity to exogenous catecholamines with risk of sympathetic overstimulation is well documented in septic shock. In this context, apelinergics are efficient and safe inotrope and vasoregulator in rodents. However, their utility in a larger animal model as well as the limitations with regards to the enzymatic breakdown during sepsis, need to be investigated. The therapeutic potential and degradation of apelinergics in sepsis were tested experimentally and in a cohort of patients. (1) 36 sheep with or without fecal peritonitis-induced septic shock (a large animal experimental design aimed to mimic the human septic shock paradigm) were evaluated for hemodynamic and renal responsiveness to incremental doses of two dominant apelinergics: apelin-13 (APLN-13) or Elabela (ELA), and (2) 52 subjects (33 patients with sepsis/septic shock and 19 healthy volunteers) were investigated for early levels of endogenous apelinergics in the blood, the related enzymatic degradation profile, and data regarding sepsis outcome. APLN-13 was the only one apelinergic which efficiently improved hemodynamics in both healthy and septic sheep. Endogenous apelinergic levels early rose, and specific enzymatic breakdown activities potentially threatened endogenous apelin system reactivity and negatively impacted the outcome in human sepsis. Short-term exogenous APLN-13 infusion is helpful in stabilizing cardiorenal functions in ovine septic shock; however, this ability might be impaired by specific enzymatic systems triggered during the early time course of human sepsis. Strategies to improve resistance of APLN-13 to degradation and/or to overcome sepsis-induced enzymatic breakdown environment should guide future works.

Funder

the Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3