Author:
Huang Xiao-Ping,Lei Lei,Lei Shun-Xin,Zhu Wei-Wei,Yan Jun
Abstract
AbstractSiraitia grosvenorii (LHG) is widely used as a medicinal and edible material around the world. The objective of this study was to develop an effective method for the authentication of the geographical origin of LHG in its main producing area Guangxi, China, which is identified as Chinese Protected Designation of Origin product, against other producing regions in China. The content of 14 elements (K, Na, Ca, P, Mg, Al, B, Ba, Cu, Fe, Mn, Ni, Zn, and Sr) of 114 LHG samples was determined by inductively coupled plasma optical emission spectrometry. Multivariate analysis was then performed to classify the geographical origin of LHG samples. The contents of multielement display an obvious trend of clustering according to the geographical origin of LHG samples based on radar plot and principal component analysis. Finally, three supervised statistical techniques, including linear discriminant analysis (LDA), k-nearest neighbours (k-NN), and support vector machine (SVM), were applied to develop classification models. Finally, 40 unknown LHG samples were used to evaluate the predictive ability of model and discrimination rate of 100%, 97.5% and 100% were obtained for LDA, k-NN, and SVM, respectively. This study indicated that it is feasible to attribute unknown LHG samples to its geographical origin based on its multielement content coupled with chemometric techniques.
Funder
Project of experimental innovation of Guangxi university for Nationalities
the National Nature Foundation Committee of P.R. China
Specific research project of Guangxi for research bases and talents
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献