Efficient MIR crosstalk reduction based on silicon-on-calcium fluoride platform with Ge/Si strip arrays

Author:

Elgammal Nayira M.,Younis B. M.,Gaafar Mahmoud A.,Elkholy M. M.,Hameed Mohamed Farhat O.,Obayya S. S. A.

Abstract

AbstractReduction of the crosstalk (CT) between contiguous photonic components is still a big challenge in fabricating high packing density photonic integrated circuits (PICs). Few techniques to accomplish that goal have been offered in recent years but all in the near-IR region. In this paper, we report a design for realizing a highly efficient CT reduction in the MIR regime, for the first time to the best of our knowledge. The reported structure is based on the silicon-on-calcium-fluoride (SOCF) platform with uniform Ge/Si strip arrays. Using Ge strips shows better CT reduction and longer coupling length (Lc) than the conventional Si based devices over a wide bandwidth in the MIR region. The effect of adding a different number of Ge and Si strips with different dimensions between two adjacent Si waveguides on the Lc and hence on the CT is analyzed using both full vectorial finite element method and 3D finite difference time domain method. An increase in the Lc by 4 orders of magnitude and 6.5 times are obtained using Ge and Si strips, respectively, compared to strips-free Si waveguides. Consequently, crosstalk suppression of − 35 dB and − 10 dB for the Ge and Si strips, respectively, is shown. The proposed structure is beneficial for high packing density nanophotonic devices in the MIR regime, such as switches, modulators, splitters, and wavelength division (de)multiplexers, which are important for MIR communication integrated circuits, spectrometers, and sensors.

Funder

Zewail City of Science & Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3