Bullet impacts in building stone excavate approximately conical craters, with dimensions that are controlled by target material

Author:

Campbell Oliver,Blenkinsop Tom,Gilbert Oscar,Mol Lisa

Abstract

AbstractBullet impacts are a ubiquitous form of damage to the built environment resulting from armed conflicts. Bullet impacts into stone buildings result in surficial cratering, fracturing, and changes to material properties, such as permeability and surface hardness. Controlled experiments into two different sedimentary stones were conducted to characterise surface damage and to investigate the relationship between the impact energy (a function of engagement distance) and crater volumes. Simplified geometries of crater volume using only depth and diameter measurements showed that the volume of a simple cone provides the best approximation (within 5%) to crater volume measured from photogrammetry models. This result suggests a quick and efficient method of estimating crater volumes during field assessments of damage. Impact energy has little consistent effect on crater volume over the engagement distances studied (100–400 m), but different target materials result in an order of magnitude variation in measured crater volumes. Bullet impacts in the experiments are similar in appearance to damage caused by hypervelocity experiments, but crater excavation is driven by momentum transfer to the target rather than a hemispherical shock wave. Therefore in contrast to predictions of impact scaling relationships for hypervelocity experiments, target material plays the dominant role in controlling damage, not projectile energy.

Funder

Leverhulme Trust,United Kingdom

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3