Instabilities of Thin Films on a Compliant Substrate: Direct Numerical Simulations from Surface Wrinkling to Global Buckling

Author:

Nikravesh SiavashORCID,Ryu DonghyeonORCID,Shen Yu-LinORCID

Abstract

AbstractFor structures consisting of a thin film bonded to a compliant substrate, wrinkling of the thin film is commonly observed as a result of mechanical instability. Although this surface undulation may be an undesirable feature, the development of new functional devices has begun to take advantage of wrinkled surfaces. The wrinkled structure also serves to improve mechanical resilience of flexible devices by suppressing crack formation upon stretching and bending. If the substrate has a reduced thickness, buckling of the entire structure may also occur. It is important to develop numerical design tools for predicting both wrinkle and buckle formations. In this paper we report a comprehensive finite element-based study utilizing embedded imperfections to directly simulate instabilities. The technique overcomes current computational challenges. The temporal evolution of the wrinkling features including wavelength and amplitude, as well as the critical strains to trigger the surface undulation and overall structural buckling, can all be predicted in a straightforward manner. The effects of model dimensions, substrate thickness, boundary condition, and composite film layers are systematically analyzed. In addition to the separate wrinkling and buckling instabilities developed under their respective geometric conditions, we illustrate that concurrent wrinkling and buckling can actually occur and be directly simulated. The correlation between specimen geometry and instability modes, as well as how the deformation increment size can influence the simulation result, are also discussed.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3