Author:
Otgonbayar Zambaga,Jun Joo Young,Youn Cho Kwang,Yul Park Sang,Youl Park Kwang,Oh Won-Chun
Abstract
AbstractThe gas sensing ability of a pure β-SiC fiber is limited due to its low-sensitivity and selectivity with poor recovery time during a gas sensing test. The combination of functional β-SiC fibers with metal-oxide (MO) can lead to excellent electronic conductivity, boosted chemical activity, and high reaction activity with the target gas and β-SiC–In2O3 sensor material. Influence factors such as amounts of MO, current collectors, and gas species (CO2, O2 and without gas) for the gas sensing ability of β-SiC–In2O3 nanocomposite were determined at standard room temperature (25 °C) and high temperature (350 °C) conditions. The gas sensing ability of the functional β-SiC fiber was significantly enhanced by the loading of In2O3 metal-oxide. In addition, the MO junction on the β-SiC fiber was mainly subjected to the Si–C–O–In bond sensor layer with an effective electron-transfer ability. The gas sensing mechanism was based on the transfer of charges, in which the sensing material acted as an absorber or a donor of charges. The sensor material could use different current- collectors to support the electron transfer and gas sensing ability of the material. A 1:0.5M SiC–In2O3 coated Ni-foil current collector sensor showed better sensing ability for CO2 and O2 gases than other gas sensors at room temperature and high temperature conditions. The sensing result of the electrode was obtained with different current density values without or with gas purging conditions because CO2 and O2 gases had electron acceptor properties. During the gas sensing test, the sensor material donated electrons to target gases. The current value on the CV graph then significantly changed. Our obtained sample analysis data and the gas sensing test adequately demonstrated that MO junctions on functional β-SiC fibers could improve the sensitivity of a sensor material and particularly upgrade the sensor material for gas sensing.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献