Author:
Schroeder Natalia M.,Panebianco Antonella
Abstract
AbstractDrones are being increasingly used in research and recreation but without an adequate assessment of their potential impacts on wildlife. Particularly, the effect of sociability on behavioural responses to drone-associated disturbance remains largely unknown. Using an ungulate with complex social behaviour, we (1) assessed how social aggregation and offspring presence, along with flight plan characteristics, influence the probability of behavioural reaction and the flight distance of wild guanacos (Lama guanicoe) to the drone's approach, and (2) estimated reaction thresholds and flight heights that minimise disturbance. Sociability significantly affected behavioural responses. Large groups showed higher reaction probability and greater flight distances than smaller groups and solitary individuals, regardless of the presence of offspring. This suggests greater detection abilities in large groups, but we cannot rule out the influence of other features inherent to each social unit (e.g., territoriality) that might be working simultaneously. Low flight heights increased the probability of reaction, although the effect of drone speed was less clear. Reaction thresholds ranged from 154 m (solitary individuals) to 344 m (mixed groups), revealing that the responsiveness of this guanaco population to the drone is the most dramatic reported so far for a wild species.
Publisher
Springer Science and Business Media LLC
Reference82 articles.
1. Jones, G. P., Pearlstine, L. G. & Percival, H. F. An assessment of small unmanned aerial vehicles for wildlife research. Wildl. Soc. Bull. 34, 750–758 (2006).
2. Jones, G. P. The feasibility of using small unmanned aerial vehicles for wildlife research. Masters Thesis. (University of Florida, 2003).
3. Watts, A. C. et al. Unmanned aircraft systems (UASs) for ecological research and natural-resource monitoring (Florida). Ecol. Restor. 26, 13–14 (2008).
4. Chabot, D. Systematic Evaluation of a Stock Unmanned Aerial Vehicle (UAV) System for Small-Scale Wildlife Survey Applications. Masters Thesis. (McGill University, 2009).
5. Koski, W. R. et al. Evaluation of an unmanned airborne system for monitoring marine mammals. Aquat. Mamm. 35, 347–357 (2009).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献