A critical assessment of nanoparticles enhanced phase change materials (NePCMs) for latent heat energy storage applications

Author:

Amidu Muritala Alade,Ali Mohamed,Alkaabi Ahmed K.,Addad Yacine

Abstract

AbstractPhase change material (PCM) laden with nanoparticles has been testified as a notable contender to increase the effectiveness of latent heat thermal energy storage (TES) units during charging and discharging modes. In this study, a numerical model is developed and implemented based on the coupling between an advanced two-phase model for the nanoparticles-enhanced PCM (NePCM) and the enthalpy-porosity formulation for the transient behavior of the phase change. Therefore, a porosity source term is added to the nanoparticles transport equation to account for the particles' frozen state in regions occupied by solid PCM. This two-phase model includes three main nanoparticles’ slip mechanisms: Brownian diffusion, thermophoresis diffusion, and sedimentation. A two-dimensional model of a triplex tube heat exchanger is considered and different charging and discharging configurations are analyzed. Compared to pure PCM, results show a substantial heat transfer enhancement during the charging and discharging cycle in which a homogeneous distribution of nanoparticles is considered as the initial condition. For this case, the two-phase model predictions are superior to the ones obtained with the classical single-phase model. In the case of multi-cycle charging and discharging, a significant deterioration of the heat transfer rate is observed using the two-phase model while such assessment is senseless using the single-phase mixture model due to the physical assumptions upon which this model is formulated. The two-phase model results reveal that, for a NePCM with high nanoparticles concentration (> 1%), the melting performance during the second charging cycle is reduced by 50% compared to the first one. This performance degradation is attributed to a noteworthy non-homogeneous distribution of the nanoparticles at the beginning of the second charging cycle. The dominant nanoparticles migration mechanism, in this scenario, is the one resulting from sedimentation effects.

Funder

Khalifa University of science and technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3