Author:
Dieks Jana-K.,Jünemann Laura,Hensel Kai O.,Bergmann Charlotte,Schmidt Stefan,Quast Anja,Horn Sebastian,Sigler Matthias,Meyer-Marcotty Philipp,Santander Petra
Abstract
AbstractHead development is a surrogate for brain development in infants and is related to neurocognitive outcome. There is only limited knowledge on early extra-uterine head shape and size assessment in very preterm infants. Here, 26 very preterm infants with a mean gestational age of 29.1 ± 2.2 weeks and a mean birth weight of 1273.8 ± 427.7 g underwent serial stereophotogrammetric 3D head imaging in weekly intervals from birth to term-equivalent age. The main outcome was the longitudinal assessment of the ‘physiological’ preterm head development with cephalometric size (head circumference, cranial volume) and shape parameters (cranial index, cranial vault asymmetry index) according to chronological and postmenstrual age (PMA). Potential clinical risk factors for the development of an abnormal low cranial index (dolichocephaly) were analysed. In serial measurements of 26 infants, the estimated head volume (95% confidence interval) increased from 244 (226–263) cm3 at 28 weeks PMA to 705 (688–721) cm3 at 40 weeks PMA. Moderate or severe dolichocephaly occurred in 21/26 infants (80.8%). Cranial index decreased over time (72.4%; 70.7–74 95% confidence interval). Brachycephaly and plagiocephaly were uncommon. No risk factors for severe dolichocephaly were identified. Our study shows that early detection of head shape and size anomalies utilizing 3D stereophotogrammetry is feasible and safe even in very preterm infants < 1500 g and/or < 32 weeks. 3D stereophotogrammetry could be used for timely identification of infants at risk for head shape anomalies. No specific risk factors for head shape anomalies were identified, especially not mode and duration of respiratory support.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献