High-capacity data hiding for medical images based on the mask-RCNN model

Author:

Saidi Hadjer,Tibermacine Okba,Elhadad Ahmed

Abstract

AbstractThis study introduces a novel approach for integrating sensitive patient information within medical images with minimal impact on their diagnostic quality. Utilizing the mask region-based convolutional neural network for identifying regions of minimal medical significance, the method embeds information using discrete cosine transform-based steganography. The focus is on embedding within “insignificant areas”, determined by deep learning models, to ensure image quality and confidentiality are maintained. The methodology comprises three main steps: neural network training for area identification, an embedding process for data concealment, and an extraction process for retrieving embedded information. Experimental evaluations on the CHAOS dataset demonstrate the method’s effectiveness, with the model achieving an average intersection over union score of 0.9146, indicating accurate segmentation. Imperceptibility metrics, including peak signal-to-noise ratio, were employed to assess the quality of stego images, with results showing high capacity embedding with minimal distortion. Furthermore, the embedding capacity and payload analysis reveal the method’s high capacity for data concealment. The proposed method outperforms existing techniques by offering superior image quality, as evidenced by higher peak signal-to-noise ratio values, and efficient concealment capacity, making it a promising solution for secure medical image handling.

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. Fraser, R. Iso 27799: Security management in health using ISO/IEC 17799. In Canadian Institute for Health Information (CIHI) Partnership Conference, June 2006 (2006).

2. Katz, J. & Lindell, Y. Introduction to Modern Cryptography: Principles and Protocols (Chapman and hall/CRC, 2007).

3. Cox, I., Miller, M., Bloom, J., Fridrich, J. & Kalker, T. Digital Watermarking and Steganography (Morgan kaufmann, 2007).

4. Yahya, A. Steganography Techniques for Digital Images (Springer, 2019).

5. Hua, C. et al. Steganography for medical record image. Comput. Biol. Med. 165, 107344 (2023).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Overview on Image Segmentation Techniques for Reversible Data Hiding;International Journal of Mathematical, Engineering and Management Sciences;2024-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3