Author:
Adamson Matthew W.,Morozov Andrew Yu.
Abstract
AbstractBiological systems are characterised by a high degree of uncertainty and complexity, which implies that exact mathematical equations to describe biological processes cannot generally be justified. Moreover, models can exhibit sensitivity to the precise formulations of their component functions—a property known as structural sensitivity. Structural sensitivity can be revealed and quantified by considering partially specified models with uncertain functions, but this goes beyond well-established, parameter-based sensitivity analysis, and currently presents a mathematical challenge. Here we build upon previous work in this direction by addressing the crucial question of identifying the processes which act as the major sources of model uncertainty and those which are less influential. To achieve this goal, we introduce two related concepts: (1) the gradient of structural sensitivity, accounting for errors made in specifying unknown functions, and (2) the partial degree of sensitivity with respect to each function, a global measure of the uncertainty due to possible variation of the given function while the others are kept fixed. We propose an iterative framework of experiments and analysis to inform a heuristic reduction of structural sensitivity in a model. To demonstrate the framework introduced, we investigate the sources of structural sensitivity in a tritrophic food chain model.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献