Cryptographic triboelectric random number generator with gentle breezes of an entropy source

Author:

Kim Moon-Seok,Tcho Il-Woong,Choi Yang-Kyu

Abstract

AbstractA wind-driven triboelectric nanogenerator (W-TENG) is a promising energy harvesting device due to its clean, ubiquitous and unexhausted properties. In addition, a W-TENG induces unpredictable chaotic outputs from wind flow that can serve as an entropy source for cryptography. This can be applied to a true random number generator (TRNG) for a secured system due to its inherent turbulent nature; thus, a W-TENG with a two-in-one structure can simultaneously generate both power and true random numbers. However, a previously reported W-TENG had one major drawback: a wind velocity of 10 m/s is required for stable energy harvesting by wind force. Thus, it is timely to demonstrate a W-TENG-based RNG whose operating condition is below 3 m/s, which is a gentle breeze similar to natural wind. In this study, we demonstrate a wind-driven cryptographic triboelectric random number generator (WCT-RNG) by using a W-TENG whose operating condition for wind speed is below 3 m/s by adopting a rear-fixed film structure instead of a conventional structure. The rear-fixed film refers to the fluttering film being freestanding on the front-side and fixed on the rear-side, where the front- and rear-sides are the wind inlet and outlet, respectively. The WCT-RNG enables the W-TENG to operate below a 3 m/s wind velocity. Because of this, the working time of the WCT-RNG is dramatically enhanced from only 8–42% at an average altitude above sea level. As the capability of operating at low wind speeds is significantly improved, a WCT-RNG becomes more useful and practical for generating both power and true random numbers in a single device. The device can thereby lead to the construction of a self-powered TRNG and secure communication for Internet of Things (IoT) devices in various environments, even under a gentle breeze. In this study, we explain the design of a WCT-RNG structure and also evaluate its randomness by using an NIST SP 800-22 B test suite with a reliability test.

Funder

Hanbat National University

Korea Electric Power Corporation

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3