Migration mechanism of grouting slurry and permeability reduction in mining fractured rock mass

Author:

Zhengzheng Cao,Pengshuai Wang,Zhenhua Li,Feng Du

Abstract

AbstractIn order to solve the water and gas discharge hazard caused by gob water and harmful gases (such as CO), the method of grouting overburden fractures is adopted to achieve the purpose of safe and efficient mining production in coal mines. This paper carries out the experimental research on the permeability reduction effect of grouting in fractured rock mass, expounds the relationship between gas flow rate and pressure gradient, seepage pressure and permeability, confining pressure and permeability, and analyzes the permeability change law of fractured rock mass before and after grouting. Besides, the grouting migration and permeability reduction model of fractured fine-grained sandstone is constructed by combining grouting test and numerical simulation, which reveals the dynamic evolution law of rock mass permeability in the grouting process. The results show that the permeability of the grouting rock sample decreases from 700–13,000 to 15–300 mD than that of the ungrouting rock sample, and the decrease is more than 95%, which indicates that the sealing performance of grouting slurry is better. Besides, numerical simulations show that the initial permeability of rock samples is 971.9 mD, and the permeability decreases to 45.79 mD after 1800s, and the permeability decreases to 95.3%, which is basically consistent with the experimental results after grouting. The greater the grouting pressure is, the better the grouting effect is. With the increase of the grouting pressure, the increase of the grouting effect is no longer obvious.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3