Process optimization and technoeconomic environmental assessment of biofuel produced by solar powered microwave pyrolysis

Author:

Fodah Ahmed Elsayed MahmoudORCID,Abdelwahab Taha Abdelfattah MohammedORCID

Abstract

AbstractMicrowave pyrolysis of corn stover has been optimized by Response surface methodology under different microwave power (500, 700, and 900 W) and three ratios of activated carbon additive (10, 15, and 20%) for obtaining maximum bio-oil yield followed by biochar. The optimal result has been evaluated and the environmental and techno-economic impacts of using solar-powered microwave heating have been tested. The optimal pyrolysis condition found to be 700 W microwave power and 10% of activated carbon. The yields of both bio-oil and biochar were about 74 wt% under optimal condition. The higher heat values of 26 MJ/kg and 16 MJ/kg were respectively achieved for biochar and bio-oil. The major components of bio-oil were hydrocarbons (36%) and phenols (28%) with low oxygen-containing compounds (2%) and acids (2%). Using the solar-powered system, 20,549 tonnes of CO2 can be mitigated over the lifetime of the set-up, resulting in USD 51,373 in carbon credit earnings, compared to 16,875 tonnes of CO2 mitigation and USD 42,167 in carbon credit earnings from a grid electricity system. The payback periods for solar-powered and grid-connected electrical systems are estimated to be 1.6 and 0.5 years, respectively, based on biochar and bio-oil income of USD 39,700 and USD 45,400.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3