Machine learning as an improved estimator for magnetization curve and spin gap

Author:

Nakamura Tota

Abstract

AbstractThe magnetization process is a very important probe to study magnetic materials, particularly in search of spin-liquid states in quantum spin systems. Regrettably, however, progress of the theoretical analysis has been unsatisfactory, mostly because it is hard to obtain sufficient numerical data to support the theory. Here we propose a machine-learning algorithm that produces the magnetization curve and the spin gap well out of poor numerical data. The plateau magnetization, its critical field and the critical exponent are estimated accurately. One of the hyperparameters identifies by its score whether the spin gap in the thermodynamic limit is zero or finite. After checking the validity for exactly solvable one-dimensional models we apply our algorithm to the kagome antiferromagnet. The magnetization curve that we obtain from the exact-diagonalization data with 36 spins is consistent with the DMRG results with 132 spins. We estimate the spin gap in the thermodynamic limit at a very small but finite value.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3