Overcoming the strength–formability trade-off in high strength steels via cryogenic treatment

Author:

Park Gyeongbae,Zargaran A.,Oh J. K.,Trang T. T. T.,Kim N. J.

Abstract

AbstractHigh strength steels are becoming more important than ever before for automotive applications to reduce the weight of automobiles and to ensure the safety of passengers. Since increased strength usually results in degraded formability, however, cold forming of high strength steels into final shapes remains a challenge to both automotive manufacturers and suppliers. Here we report novel alloy and processing design concepts that can impart high strength to cold-formable steels, which deviates from the traditional approach of improving the formability of high strength steels. Such designed steel subjected to a designed processing route shows an excellent combination of formability and strength as well as crashworthiness, which is crucial for the safety of passengers in the automobiles. The alloy and processing design concepts used in the present study are based on the utilization of thermally induced austenite to martensite transformation, which imparts high strength to cold-formable austenite by cryogenic treatment.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference55 articles.

1. Bouaziz, O., Zurob, H. & Huang, M. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res. Int. 84, 937–947 (2013).

2. Kuziak, R., Kawalla, R. & Waengler, S. Advanced high strength steels for automotive industry. Arch. Civ. Mech. Eng. 8, 103–117 (2008).

3. Militzer, M. A synchrotron look at steel. Science 298, 975–976 (2002).

4. Ashby, M. F. Materials Selection in Mechanical Design 3rd edn. (Butterworth-Heinemann, 2005).

5. Kim, N. J. Critical assessment 6: Magnesium sheet alloys: Viable alternatives to steels?. Mater. Sci. Technol. 30, 1925–1928 (2014).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3