Predicting drug adverse effects using a new Gastro-Intestinal Pacemaker Activity Drug Database (GIPADD)

Author:

Liu Julia Yuen Hang,Rudd John A.

Abstract

AbstractElectrical data could be a new source of big-data for training artificial intelligence (AI) for drug discovery. A Gastro-Intestinal Pacemaker Activity Drug Database (GIPADD) was built using a standardized methodology to test drug effects on electrical gastrointestinal (GI) pacemaker activity. The current report used data obtained from 89 drugs with 4867 datasets to evaluate the potential use of the GIPADD for predicting drug adverse effects (AEs) using a machine-learning (ML) approach and to explore correlations between AEs and GI pacemaker activity. Twenty-four “electrical” features (EFs) were extracted using an automated analytical pipeline from the electrical signals recorded before and after acute drug treatment at three concentrations (or more) on four-types of GI tissues (stomach, duodenum, ileum and colon). Extracted features were normalized and merged with an online side-effect resource (SIDER) database. Sixty-six common AEs were selected. Different algorithms of classification ML models, including Naïve Bayes, discriminant analysis, classification tree, k-nearest neighbors, support vector machine and an ensemble model were tested. Separated tissue models were also tested. Averaging experimental repeats and dose adjustment were performed to refine the prediction results. Random datasets were created for model validation. After model validation, nine AEs classification ML model were constructed with accuracy ranging from 67 to 80%. EF can be further grouped into ‘excitatory’ and ‘inhibitory’ types of AEs. This is the first time drugs are being clustered based on EF. Drugs acting on similar receptors share similar EF profile, indicating potential use of the database to predict drug targets too. GIPADD is a growing database, where prediction accuracy is expected to improve. The current approach provides novel insights on how EF may be used as new source of big-data in health and disease.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3