Coal seam in-situ inorganic analysis based on least angle regression and competitive adaptive reweighted sampling algorithm by XRF–visNIR fusion

Author:

Zhu Lei,Gu Wenzhe,Song Tianqi,Qiu Fengqi,Wang Qingya

Abstract

AbstractThe fusion of X-ray fluorescence spectroscopy (XRF) and visible near infrared spectroscopy (visNIR) has been widely used in geological exploration. The outer product analysis (OPA) has a good effect in the fusion. The dimension of the spectral matrix obtained by OPA is large, and the Competitive Adaptive Reweighted Sampling (CARS) cannot cover the whole spectrum. As a result, the selected variables by the method are inconsistent each time. In this paper, a new feature variable screening method is proposed, which uses the Least Angle Regression (LAR) to select the high dimensional spectral matrix first, and then uses CARS to complete the secondary selection of the spectral matrix, forming the LAR-CARS algorithm. The purpose is to make the sampling method cover all the spectral data. XRF and visNIR tests were carried out on three cores in two boreholes, and a cross-validation set, validation set and a test set were established by combining the results of wavelength dispersion X-ray fluorescence spectrometer and ITRAX Core scanner in the laboratory. The quantitative model was established with the Extreme Gradient Boosting (XGBoost) and LAR-CARS was compared to these other algorithms (LAR, Successive Projections Algorithm, Monte Carlo uninformative variables elimination and CARS). The results showed that the RMSEP values of the models established by the LAR-CARS for six rock-forming elements (Si, Al, K, Ca, Fe, Ti) were relatively small, and the RPD ranges from 1.424 to 2.514. All these results show that the high-dimensional matrix formed by XRF and visNIR integration combined with LAR-CARS can be used for quantitative analysis of rock forming elements in in-situ coal seam cores, and the analysis results can be used as the basis for judging lithology. The research will provide necessary technical support for digital mine construction.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3