Sign language recognition using the fusion of image and hand landmarks through multi-headed convolutional neural network

Author:

Pathan Refat Khan,Biswas Munmun,Yasmin Suraiya,Khandaker Mayeen UddinORCID,Salman Mohammad,Youssef Ahmed A. F.

Abstract

AbstractSign Language Recognition is a breakthrough for communication among deaf-mute society and has been a critical research topic for years. Although some of the previous studies have successfully recognized sign language, it requires many costly instruments including sensors, devices, and high-end processing power. However, such drawbacks can be easily overcome by employing artificial intelligence-based techniques. Since, in this modern era of advanced mobile technology, using a camera to take video or images is much easier, this study demonstrates a cost-effective technique to detect American Sign Language (ASL) using an image dataset. Here, “Finger Spelling, A” dataset has been used, with 24 letters (except j and z as they contain motion). The main reason for using this dataset is that these images have a complex background with different environments and scene colors. Two layers of image processing have been used: in the first layer, images are processed as a whole for training, and in the second layer, the hand landmarks are extracted. A multi-headed convolutional neural network (CNN) model has been proposed and tested with 30% of the dataset to train these two layers. To avoid the overfitting problem, data augmentation and dynamic learning rate reduction have been used. With the proposed model, 98.981% test accuracy has been achieved. It is expected that this study may help to develop an efficient human–machine communication system for a deaf-mute society.

Funder

American University of the Middle East

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3