Design of a silicon Mach–Zehnder modulator via deep learning and evolutionary algorithms

Author:

Aparecido de Paula Romulo,Aldaya Ivan,Sutili Tiago,Figueiredo Rafael C.,Pita Julian L.,Bustamante Yesica R. R.

Abstract

AbstractAs an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a $$40~\text {GHz}$$ 40 GHz bandwidth and a driving voltage of $$6.25~\text {V}$$ 6.25 V , or, alternatively, $$47.5~\text {GHz}$$ 47.5 GHz with a driving voltage of $$8~\text {V}$$ 8 V . Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.

Funder

Ministério da Ciência, Tecnologia, Inovações e Comunicações

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Sisfoton-MCTI Integration Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3