A brighter shade of future climate on Himalayan musk deer Moschus leucogaster

Author:

Mainali Kumar P.,Singh Paras Bikram,Evans Michael,Adhikari Arjun,Hu Yiming,Hu Huijian

Abstract

AbstractHimalayan musk deer (Moschus leucogaster) is classified as an endangered species by IUCN with a historically misunderstood distribution due to misidentification with other species of musk deer, Moschus spp. Taking advantage of recent genetic analyses confirming the species of various populations in Nepal and China, we produced an accurate estimate of the species’ current and future distribution under multiple climate change scenarios. We collected high-quality occurrence data using systematic surveys of various protected areas of Nepal to train species distribution models. The most influential determinants of the distribution of Himalayan musk deer were precipitation of the driest quarter, temperature seasonality, and annual mean temperature. These variables, and precipitation in particular, determine the vegetation type and structure in the Himalaya, which is strongly correlated with the distribution of Himalayan musk deer. We predicted suitable habitats between the Annapurna and Kanchenjunga region of Nepal Himalaya as well as the adjacent Himalaya in China. Under multiple climate change scenarios, the vast majority (85–89%) of current suitable sites are likely to remain suitable and many new areas of suitable habitat may emerge to the west and north of the current species range in Nepal and China. Two-thirds of current and one-third of future suitable habitats are protected by the extensive network of protected areas in Nepal. The projected large gains in suitable sites may lead to population expansion and conservation gains, only when the threat of overexploitation and population decline is under control.

Funder

National Socio-Environmental Synthesis Center

Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3