Author:
Ruiz-Chamorro Andres,Garcia-Callejo Aida,Fernandez Veronica
Abstract
AbstractIn the domain of continuous variable quantum key distribution (CV-QKD), a significant challenge arises in achieving precise frequency synchronization, an issue commonly termed as frequency locking. This involves matching the optical frequencies of both the quantum signal laser and the local oscillator laser for accurate symbol demodulation during the exchange of quantum keys. As such, implementations today still grapple with maintaining precise synchronization between sender and receiver frequencies, occasionally hindering the efficiency and reliability of the information exchange. Addressing this challenge, we present and empirically validate a novel approach to CV-QKD by incorporating a pilot tone-assisted frequency locking algorithm to enhance stability when using a locally generated local oscillator (LLO) at the receiver. The proposed design leverages software-based optimization techniques, thereby eliminating the need for high-speed electronic stabilization devices and achieving efficient performance at typical repetition rates. Specifically, the introduction of the pilot tone algorithm allows us to effectively mitigate phase fluctuations and preserve the integrity of the quantum signals during transmission without resorting to time-multiplexed reference pulses or fast-locking electronics in the lasers. Our results suggest the potential for achieving secure key rates of up to 1 Mb/s over a 50 km single-mode fiber when using these techniques, offering promising insights into the feasibility of high-rate, low-complexity CV-QKD implementations under realistic conditions.
Funder
European Commission
Agencia Estatal de Investigación
Publisher
Springer Science and Business Media LLC