A numerical study on CO migration after blasting in high-altitude tunnel by inclined shaft

Author:

Wu Bo,Zhao Rui,Meng Guowang,Xu Shixiang,Qiu Weixing,Chen Huihao

Abstract

AbstractOn the western plateau of China, ventilation problems brought on by low atmospheric pressure must be overcome. And CO migration after blasting in high-altitude tunnel by inclined shaft has become a significant scientific issue. In this study, the Computational Fluid Dynamics (CFD) method was used to analyze the flow field characteristics at the junction of the inclined shaft and tunnel. In addition, the effects of different fan opening modes and different initial CO concentration distributions on the ventilation were discussed. The simulation results showed that the main difference in the ventilation wind field was reflected in the position of the vortex region due to the different fan opening modes. Meanwhile, various initial CO concentration distributions showed different migration when there was no air volume difference between the left and right tunnels. Eliminating vortex zones and fully using high velocity airflow could improve relative ventilation efficiency by at least 18%. CO would accumulate in the opposite direction of the tunnel if only one of the fans was turned on. Therefore, a two-stage ventilation scheme was proposed, and the energy consumption was reduced by at least 33%. This research can provide guidance on high-altitude tunnel construction with multiple working faces to improve ventilation efficiency and reduce energy consumption.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3