Simultaneous impregnation and microencapsulation of CaCl2 using silica gel and methyl cellulose for thermal energy storage applications

Author:

Shervani Suboohi,Strong Curtis,Tezel F. Handan

Abstract

AbstractThermal energy storage utilizing the adsorption of moisture from air is a promising energy storage technology due to its high energy density and minimum heat losses. Salt hydrates and salt hydrate composites, such as calcium chloride (CaCl2) and CaCl2-based composites, have shown favourable energy storage properties in this area of research. However, these materials have shown issues with stability due to swelling and deliquescence. In this work, CaCl2 was stabilized using three methods: impregnation into silica gel, encapsulation in methyl cellulose, and both impregnation and encapsulation stabilization techniques used simultaneously. Therefore, three CaCl2-based composites were synthesized. For the first composite, silica gel was impregnated with CaCl2. For the second composite, CaCl2 was encapsulated by methyl cellulose. For the third composite, silica gel was impregnated with CaCl2 and the CaCl2 was encapsulated with methyl cellulose. These samples were structurally characterized using scanning electron microscopy as well as Brunauer-Emmett-Teller (BET) to  determine surface area, pore size distribution and nitrogen adsorption isotherms at 77 K. Water vapour adsorption isotherms were also determined at 25 °C for different relative humidities by dynamic vapor sorption (DVS). Similarly, LiCl-based composites were also synthesized and examined in this work, but issues of deliquescence, swelling, and agglomeration made the materials impractical to work with. To determine the prepared materials’ thermal energy storage performance, 2–6 g of each sample was tested in a lab-scale apparatus. This process uses the exothermic adsorption of moisture from ambient air in an open thermal energy storage system. The CaCl2 impregnated silica gel that was encapsulated in methyl cellulose showed reasonably high stability and energy storage performance after 3 hydration and dehydration cycles with minimum agglomeration. An energy storage density of 241 kWh/m3 (0.87 GJ/m3) and specific energy of 630 Wh/kg (2268 kJ/kg) was achieved with this material for 90% inlet relative humidity after a regeneration at 90 °C.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3