Evaluation of the benefits of plant growth-promoting rhizobacteria and mycorrhizal fungi on biochemical and morphophysiological traits of Aloe barbadensis Mill under water deficit stress

Author:

Khajeeyan Rahil,Salehi Amin,Movahhedi Dehnavi Mohsen,Hamidian Mohammad,Hazrati Saeid

Abstract

AbstractAloe barbadensis is a drought-tolerant perennial medicinal plant with both nutritional and cosmetic uses. Drought is one of the main abiotic stresses limiting plant growth and development. However, the use of drought-resistant plants combined with beneficial soil micro-organisms could improve the effectiveness of biological methods to mitigate drought damage. This research aims to evaluate the effects of Funneliformis mosseae (MF), plant growth-promoting rhizobacteria (PGPR) (including Pseudomonas putida and Pantoea agglomerans), and their co-inoculation on the macronutrient status, antioxidant enzyme activities, and other morphophysiological traits of A. barbadensis under four irrigation regimes [25%, 50%, 75% and 100% of water requirement (WR)]. Three harvests were conducted, revealing that inoculation enhanced the survival rate and shoot fresh weight (SFW) compared to the control plants. However, at 25% WR, the SFW was reduced by 43% more than the control. across all harvests, while the PGPR + MF treatment showed increases of more than 19%, 11%, and 17% compared to the control, MF, and PGPR treatments, respectively. The results also showed that A. barbadensis exhibited innate drought tolerance up to a 50% WR level by enhancing physiological defenses, such as antioxidant enzyme activity. Inoculation increased the macronutrient status of the plant at all levels of irrigation regimes especially under severe drought conditions. The highest levels of nitrogen (N) (16.24 mg g−1 DW) and phosphorus (P) (11.29 mg g−1 DW) were observed in the PGPR + MF treatment at 100% WR. The maximum relative water content under MF inoculation and 75% WR (98.24%) (98.24%) was reached. PGPR + MF treatment alleviated drought-induced osmotic stress, as indicated by reduced antioxidant enzyme activities and electrolyte leakage. However, P. putida and P. agglomerans strains alone or in combination with F. mosseae increased plant yield, macronutrient uptake and antioxidant enzyme activity. This study underscores the potential of these PGPR and MF strains as invaluable biological tools for the cultivation of A. barbadensis in regions with severe drought stress.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3