PI3K/Akt signaling pathway mediates the effect of low-dose boron on barrier function, proliferation and apoptosis in rat intestinal epithelial cells

Author:

Chen Shuqin,Huang Jialiang,Liu Ting,Zhang Feng,Zhao Chunfang,Jin ErhuiORCID,Li ShengheORCID

Abstract

AbstractBoron is an essential trace element with roles in growth, development, and physiological functions; however, its mechanism of action is still unclear. In this study, the regulatory roles of the PI3K/Akt signaling pathway on boron-induced changes in barrier function, proliferation, and apoptosis in rat intestinal epithelial cells were evaluated. Occludin levels, the proportion of cells in the G2/M phase, cell proliferation rate, and mRNA and protein expression levels of PCNA were higher, while the proportions of cells in the G0/G1 and S phases, apoptosis rate, and caspase-3 mRNA and protein expression levels were lower in cells treated with 0.8 mmol/L boron than in control IEC-6 cells (P < 0.01 or P < 0.05). However, 40 mmol/L boron decreased ZO-1 and Occludin levels, the proportion of cells in the G2/M phase, cell proliferation rate, and mRNA and protein levels of PCNA and increased the apoptosis rate and caspase-3 mRNA expression (P < 0.01 or P < 0.05). After specifically blocking PI3K and Akt signals (using LY294002 and MK-2206 2HCL), 0.8 mmol/L boron had no effects on Occludin, PCNA level, apoptosis rates, and caspase-3 levels (P < 0.05); however, the proliferation rate and PCNA levels decreased significantly (P < 0.01 or P < 0.05). The addition of 40 mmol/L boron did not affect ZO-1 and Occludin levels and did not affect the apoptosis rate or PCNA and caspase-3 levels. These results suggested that the PI3K/Akt signaling pathway mediates the effects of low-dose boron on IEC-6 cells.

Funder

National Natural Science Foundation of China

Anhui graduate academic innovation project

National Undergraduate Innovation Project

Anhui Natural Science Foundation Project

The Natural Science Key Foundation of Anhui Education Department

Collaborative innovation project of Anhui Province

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3