Influence of watershed characteristics on streambed hydraulic conductivity across multiple stream orders

Author:

Abimbola Olufemi P.,Mittelstet Aaron R.,Gilmore Troy E.,Korus Jesse T.

Abstract

AbstractStreambeds are critical hydrological interfaces: their physical properties regulate the rate, timing, and location of fluxes between aquifers and streams. Streambed vertical hydraulic conductivity (Kv) is a key parameter in watershed models, so understanding its spatial variability and uncertainty is essential to accurately predicting how stresses and environmental signals propagate through the hydrologic system. Most distributed modeling studies use generalized Kv estimates from column experiments or grain-size distribution, but Kv may include a wide range of orders of magnitude for a given particle size group. Thus, precisely predicting Kv spatially has remained conceptual, experimental, and/or poorly constrained. This usually leads to increased uncertainty in modeling results. There is a need to shift focus from scaling up pore-scale column experiments to watershed dimensions by proposing a new kind of approach that can apply to a whole watershed while incorporating spatial variability of complex hydrological processes. Here we present a new approach, Multi-Stemmed Nested Funnel (MSNF), to develop pedo-transfer functions (PTFs) capable of simulating the effects of complex sediment routing on Kv variability across multiple stream orders in Frenchman Creek watershed, USA. We find that using the product of Kv and drainage area as a response variable reduces the fuzziness in selecting the “best” PTF. We propose that the PTF can be used in predicting the ranges of Kv values across multiple stream orders.

Funder

Department of the Interior | United States Geological Survey | Wyoming-Montana Water Science Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3