Empirical determination of the effective solid modulus in organic-rich shales

Author:

Spires K. Larkin,Castagna John P.,Omovie Sheyore John

Abstract

AbstractCalculating the change in the saturated bulk modulus of a saturated rock with new fluid properties requires a priori selection of an effective bulk modulus of the solid constituents. When the rock constituents have similar mineral moduli, the theoretical bounds on the solid modulus are close to each other. However, when solid properties vary greatly, as in organic-rich shales, the actual effective solid modulus of a physical rock may vary significantly between the bounds which results in uncertainty in the predicted change in the saturated bulk modulus of the rock. We use a semi-empirical rock physics model utilizing the Brown–Korringa equation for mineralogically heterogenous rocks and introduce three parameters to estimate the pore space compressibility, the dry frame compressibility, and the fractional position of the effective solid modulus relative to the Reuss and Voigt bounds. We optimize for these three parameters in seven organic shale formations and find that the Reuss bound for the effective solid material modulus best fits the data when organic content is high. Furthermore, we use this model to fluid substitute to 100% brine saturation and find Gassmann’s equation using the Hill average predicts similar saturated moduli to the semi-empirical Brown–Korringa rock physics model when volume fraction of solid organic matter is less than 5%. However, at higher organic contents, we find that the error using the Gassmann–Hill approach increases, and the semi-empirical Brown–Korringa model better fits the data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference31 articles.

1. Gassmann, F. Uber die Elastizit at Poroser Medien: Vier. Der Natur. Gesellschaft in Zurich. Vol. 96. 1–23. Reprinted in Pelissier, M. A. Classics of Elastic Wave Theory. https://books.google.com/books?id=Z3jvAAAAMAAJ (SEG/Society of Exploration Geophysicists, 2007).

2. Berryman, J. G. & Milton, G. W. Exact results for generalized Gassmann’s equations in composite porous media with two constituents. Geophysics 56(12), 1950–1960. https://doi.org/10.1190/1.1443006 (1991).

3. Smith, T. M., Sondergeld, C. H. & Rai, C. S. Gassmann fluid substitutions: A tutorial. Geophysics 68(2), 430–440. https://doi.org/10.1190/1.1567211 (2003).

4. Sodagar, T. M. & Lawton, D. C. Seismic modeling of CO2 fluid substitution for the Heartland Area Redwater CO2 Storage Project (HARP), Alberta, Canada. Elsevier Int. J. Energy Proc. 4, 3338–3345 (2011).

5. Bredesen, K., Jensen, E. H., Johansen, T. A., & Avseth, P. Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration. In The Leading Edge. 1350–1355 (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3