Heterogeneous human–robot task allocation based on artificial trust

Author:

Ali ArshaORCID,Azevedo-Sa Hebert,Tilbury Dawn M.,Robert Lionel P.ORCID

Abstract

AbstractEffective human–robot collaboration requires the appropriate allocation of indivisible tasks between humans and robots. A task allocation method that appropriately makes use of the unique capabilities of each agent (either a human or a robot) can improve team performance. This paper presents a novel task allocation method for heterogeneous human–robot teams based on artificial trust from a robot that can learn agent capabilities over time and allocate both existing and novel tasks. Tasks are allocated to the agent that maximizes the expected total reward. The expected total reward incorporates trust in the agent to successfully execute the task as well as the task reward and cost associated with using that agent for that task. Trust in an agent is computed from an artificial trust model, where trust is assessed along a capability dimension by comparing the belief in agent capabilities with the task requirements. An agent’s capabilities are represented by a belief distribution and learned using stochastic task outcomes. Our task allocation method was simulated for a human–robot dyad. The team total reward of our artificial trust-based task allocation method outperforms other methods both when the human’s capabilities are initially unknown and when the human’s capabilities belief distribution has converged to the human’s actual capabilities. Our task allocation method enables human–robot teams to maximize their joint performance.

Funder

Army Research Laboratory

Brazilian Army Department of Science and Technology

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Real-Time Human Attention Allocation and Scheduling in a Multi-human and Multi-robot Collaborative System;2024 IEEE Conference on Control Technology and Applications (CCTA);2024-08-21

2. Robust dynamic robot scheduling for collaborating with humans in manufacturing operations;Robotics and Computer-Integrated Manufacturing;2024-08

3. Simulation Tool Requirements for Modeling the Execution of Technological Process Operations by Collaborative Robotic System Participants;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20

4. Optimal layout planning for human robot collaborative assembly systems and visualization through immersive technologies;Expert Systems with Applications;2024-05

5. Spot Report: An Open-Source and Real-Time Secondary Task for Human-Robot Interaction User Experiments;Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3