Improved solar still productivity using PCM and nano- PCM composites integerated energy storage

Author:

Murali G.,Ramani P.,Murugan M,Elumalai P. V.,Ranjan Goud Nayani Uday,Prabhakar S.

Abstract

AbstractThe study investigates the impact of Phase Change Material (PCM) and nano Phase Change Materials (NPCM) on solar still performance. PCM and a blend of NPCM are placed within 12 copper tubes submerged in 1 mm of water to enhance productivity. Thermal performance is assessed across four major scenarios with a fixed water level of 1 mm in the basin. These scenarios include the conventional still, equipped with 12 empty copper rods and 142 g of PCM in each tube, as well as stills with NPCM Samples 1 and 2. Sample 1 contains 0.75% nanoparticle concentration plus 142 g of PCM in the first 6 tubes, while Sample 2 features 2% nanoparticle concentration plus 142 g of PCM in the subsequent 6 tubes. Aluminum oxide (Al2O3) nanoparticles ranging in size from 20 to 30 nm are utilized, with paraffin wax (PW) serving as the latent heat storage (LHS) medium due to its 62 °C melting temperature. The experiments are conducted under the local weather conditions of Vaddeswaram, Vijayawada, India (Latitude-80.6480 °E, Longitude-16.5062 °N). A differential scanning calorimeter (DSC) is utilized to examine the thermal properties, including the melting point and latent heat fusion, of the NPCM compositions. Results demonstrate that the addition of nanoparticles enhances both the specific heat capacity and latent heat of fusion (LHF) in PCM through several mechanisms, including facilitating nucleation, improving energy absorption during phase change, and modifying crystallization behavior within the phase change material. Productivity and efficiency measurements reveal significant improvements: case 1 achieves 2.66 units of daily production and 46.23% efficiency, while cases 2, 3, and 4 yield 3.17, 3.58, and 4.27 units of daily production, respectively. Notably, the utilization of NPCM results in a 60.37% increase overall productivity and a 68.29% improvement in overall efficiency.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3