Author:
Murali G.,Ramani P.,Murugan M,Elumalai P. V.,Ranjan Goud Nayani Uday,Prabhakar S.
Abstract
AbstractThe study investigates the impact of Phase Change Material (PCM) and nano Phase Change Materials (NPCM) on solar still performance. PCM and a blend of NPCM are placed within 12 copper tubes submerged in 1 mm of water to enhance productivity. Thermal performance is assessed across four major scenarios with a fixed water level of 1 mm in the basin. These scenarios include the conventional still, equipped with 12 empty copper rods and 142 g of PCM in each tube, as well as stills with NPCM Samples 1 and 2. Sample 1 contains 0.75% nanoparticle concentration plus 142 g of PCM in the first 6 tubes, while Sample 2 features 2% nanoparticle concentration plus 142 g of PCM in the subsequent 6 tubes. Aluminum oxide (Al2O3) nanoparticles ranging in size from 20 to 30 nm are utilized, with paraffin wax (PW) serving as the latent heat storage (LHS) medium due to its 62 °C melting temperature. The experiments are conducted under the local weather conditions of Vaddeswaram, Vijayawada, India (Latitude-80.6480 °E, Longitude-16.5062 °N). A differential scanning calorimeter (DSC) is utilized to examine the thermal properties, including the melting point and latent heat fusion, of the NPCM compositions. Results demonstrate that the addition of nanoparticles enhances both the specific heat capacity and latent heat of fusion (LHF) in PCM through several mechanisms, including facilitating nucleation, improving energy absorption during phase change, and modifying crystallization behavior within the phase change material. Productivity and efficiency measurements reveal significant improvements: case 1 achieves 2.66 units of daily production and 46.23% efficiency, while cases 2, 3, and 4 yield 3.17, 3.58, and 4.27 units of daily production, respectively. Notably, the utilization of NPCM results in a 60.37% increase overall productivity and a 68.29% improvement in overall efficiency.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Chauhan, V. K., Shukla, S. K. & Rathore, P. K. A systematic review for performance augmentation of solar still with heat storage materials: A state of art. J. Energy Storage 47, 103578 (2022).
2. Nagaraju, V., Murali, G., San Keerthana, M. & Murugan, M. A review on recent developments of solar stills to enhance productivity using nanoparticles and nano- PCM. Int. J. Green Energy 19(6), 685–706 (2021).
3. Kateshia, J. & Lakhera, V. A comparative study of various fatty acids as phase change material to enhance the freshwater productivity of solar still. J. Energy Storage 48, 103947 (2022).
4. Goel, V. et al. Potential of phase change materials and their effective use in solar thermal applications: A critical review. Appl. Therm. Eng. 219, 119417 (2022).
5. Paul, J., Kadirgama, K., Samykano, M., Pandey, A. K. & Tyagi, V. V. A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials. J. Energy Storage 45, 103415 (2022).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献