Uncertainty quantification for Bayesian active learning in rupture life prediction of ferritic steels

Author:

Mamun Osman,Taufique M. F. N.,Wenzlick Madison,Hawk Jeffrey,Devanathan Ram

Abstract

AbstractThree probabilistic methodologies are developed for predicting the long-term creep rupture life of 9–12 wt%Cr ferritic-martensitic steels using their chemical and processing parameters. The framework developed in this research strives to simultaneously make efficient inference along with associated risk, i.e., the uncertainty of estimation. The study highlights the limitations of applying probabilistic machine learning to model creep life and provides suggestions as to how this might be alleviated to make an efficient and accurate model with the evaluation of epistemic uncertainty of each prediction. Based on extensive experimentation, Gaussian Process Regression yielded more accurate inference ($$Pearson\;correlation\;coefficent> 0.95$$ P e a r s o n c o r r e l a t i o n c o e f f i c e n t > 0.95 for the holdout test set) in addition to meaningful uncertainty estimate (i.e., coverage ranges from 94 to 98% for the test set) as compared to quantile regression and natural gradient boosting algorithm. Furthermore, the possibility of an active learning framework to iteratively explore the material space intelligently was demonstrated by simulating the experimental data collection process. This framework can be subsequently deployed to improve model performance or to explore new alloy domains with minimal experimental effort.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3