A fusion approach to improve accuracy and estimate uncertainty in cuffless blood pressure monitoring

Author:

Landry Cederick,Peterson Sean D.,Arami Arash

Abstract

AbstractA substantial barrier to the clinical adoption of cuffless blood pressure (BP) monitoring techniques is the lack of unified error standards and methods of estimating measurement uncertainty. This study proposes a fusion approach to improve accuracy and estimate prediction interval (PI) as a proxy for uncertainty for cuffless blood BP monitoring. BP was estimated during activities of daily living using three model architectures: nonlinear autoregressive models with exogenous inputs, feedforward neural network models, and pulse arrival time models. Multiple one-class support vector machine (OCSVM) models were trained to cluster data in terms of the percentage of outliers. New BP estimates were then assigned to a cluster using the OCSVMs hyperplanes, and the PIs were estimated using the BP error standard deviation associated with different clusters. The OCSVM was used to estimate the PI for the three BP models. The three BP estimations from the models were fused using the covariance intersection fusion algorithm, which improved BP and PI estimates in comparison with individual model precision by up to 24%. The employed model fusion shows promise in estimating BP and PI for potential clinical uses. The PI indicates that about 71%, 64%, and 29% of the data collected from sitting, standing, and walking can result in high-quality BP estimates. Our PI estimator offers an effective uncertainty metric to quantify the quality of BP estimates and can minimize the risk of false diagnosis.

Funder

NSERC CGS-D, CGS-M Fellowship programs

NSERC CRD

New Frontiers in Research Fund - Exploration

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3