Author:
Gou Yanyun,Tao Jing,Huang Jia,Lei Huangwei,Chen Xiang,Wang Xiangbin
Abstract
AbstractStaircases are a frequently encountered obstacle in daily life, requiring individuals to navigate ascending and descending movements that place additional demands on the trunk and lower limbs compared to walking on level surfaces. Therefore, it is crucial to examine the biomechanical characteristics of the trunk and lower limbs in individuals with scoliosis during stair activity. The aim of this study was to investigate the biomechanical differences in trunk and lower limbs during daily stair activities between patients with scoliosis and a healthy population. Additionally, the study aimed to explore the relationship between trunk abnormalities and lower limb biomechanics, providing a clinical and objective assessment basis for scoliosis. The Qualisys system, based in Gothenburg, Sweden, was employed for data collection in this study, with a sampling frequency of 150 Hz. It captured the kinematics of the trunk and lower limbs, as well as the kinetics of the lower limbs during stair ascent and descent for both the 28 individuals with scoliosis and the 28 control participants. The results indicate that scoliosis patients demonstrated significantly higher asymmetry compared to the control group in various measures during ascent and decent. These include different parts of kinematics and kinetics. Scoliosis patients demonstrate noticeable variations in their movement patterns compared to the healthy population when engaging in stair activities. Specifically, during stair ascent, scoliosis patients exhibit a seemingly more rigid movement pattern, whereas descent is characterized by an unstable pattern.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC