A role of color vision in emmetropization in C57BL/6J mice

Author:

Yang Jinglei,Yang Li,Chen Rongfang,Zhu Yun,Wang Siyao,Hou Xueqin,Wei Bei,Wang Qiongsi,Liu Yue,Qu Jia,Zhou Xiangtian

Abstract

AbstractSpectral composition affects emmetropization in both humans and animal models. Because color vision interacts the effects of chromatic defocus, we developed a method to bypass the effects of longitudinal chromatic aberration by placing a spectral filter behind the optics of the eye, using genetic tools. Newborn C57BL/6J (B6) mice were reared in quasi-monochromatic red (585–660 nm) or blue (410–510 nm) light beginning before eye-opening. Refractive states and ocular dimensions were compared at 4, 6, 8, and 10 weeks with mice reared in normal white light. Cre recombinase-dependent Ai9 reporter mice were crossed with Chx10-Cre to obtain Chx10-Cre;Ai9 mice, expressing red fluorescent protein in retinal Cre-positive cells. Ai9 offsprings, with and without Cre, were reared under a normal visual environment. Refraction and axial components were measured as described above. Expression levels of M and S opsin were quantified by western blotting at 10 weeks. Compared with those reared in white light, B6 mice reared in red light developed relative hyperopia, principally characterized by flattening of corneal curvature. Emmetropization was not affected by blue light, possibly because the reduction in vitreous chamber depth compensated for the increase in corneal curvature. Compared with Cre-negative littermates, the refraction and axial dimensions of Chx10-Cre;Ai9 mice were not significantly different at the follow-up timepoints. M opsin levels were higher in Chx10-Cre;Ai9 mice at 10 weeks while S opsin levels were not different. Red light induced a hyperopic shift in mouse refractive development. Emmetropization was not impacted in mice with perturbed color vision caused by intrinsic red-fluorescent protein, suggesting that color vision may not be necessary in mouse emmetropization when other mechanisms are present.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3