A green compliant hand-held selective electrode device for monitoring active pharmaceuticals and the kinetics of their degradation

Author:

Badr ElDin Norhan,Dabbish Eslam,Fawaz Esraa,Abd El-Rahman Mohamed K.,Shoeib Tamer

Abstract

AbstractAn in-line smartphone connected to a screen-printed selective electrode hand-held device was used to determine the concentration of distigmine bromide (DB) in its pure and dosage forms as well as its degradation kinetics by continuously measuring the change in the produced emf over time. The main objective, supported by the data presented, is to produce a highly reliable smartphone integrated selective sensor as a portable analyzer with potential high cloud connectivity combining a wide linear dynamic range, the fastest response time with the lowest limits of detection and quantitation while best integrating green analytical chemistry principles. The choice of ionophore used in this approach was guided by computation and the data obtained was compared with traditional analytical techniques. DB, for which there are no previously reported stability-indicating methods and for which four novel such methods are proposed here, was selected as a model drug for this work. At-line UV-spectrophotometry DB assay was obtained by measuring the difference between the spectra of the degradation product and the same concentration of intact drug. The degradation kinetics were studied by this method through tracking the decrease of DB absorbance and/or the increase of a generated degradation product signal over time. Off-line separation based HPLC and TLC stability-indicating methods for DB were also presented. All methods employed in this work were validated for accuracy, precision, specificity, repeatability, linearity, range, detection and quantification limits according to the ICH guidelines and were applied to the analysis of laboratory prepared mixtures as well as commercial products. While all methods proposed were shown to be highly reliable, the smartphone integrated selective sensor is highlighted as a portable analyzer with potential high cloud connectivity and was shown to combine a wide linear dynamic range, the fastest response time with the lowest limits of detection and quantitation while best integrating green analytical chemistry principles.

Funder

American University in Cairo

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3