Detecting desertification in the ancient oases of southern Morocco

Author:

Rayne LouiseORCID,Brandolini FilippoORCID,Makovics Jen Lavris,Hayes-Rich Emily,Levy Jackson,Irvine Hope,Assi Lima,Bokbot Youssef

Abstract

AbstractUnderstanding what led to desertification in the long-term is crucial for adaptation to climate change and pressures on resources in North Africa, but existing maps do not accurately show the extent of degraded land or the traditional water systems which underpinned cultivation. These products rely on recent vegetation trends and hindcasted statistical data. Desertification which occurred prior to the later twentieth century is poorly represented, if at all. However, large areas of abandoned fields are distinctive in satellite imagery as brightly reflectant and smooth surfaces. We present a new and open-source machine-learning workflow for detecting desertification using satellite data. We used Google Earth Engine and the random forest algorithm to classify five landcover categories including a class representing desertified fields. The input datasets comprised training polygons, a 12-band Sentinel-2 composite and derived tasselled cap components, and a Sentinel-1 VV-polarisation composite. We test our approach for a case study of Skoura oasis in southern Morocco with a resulting accuracy of 74–76% for the desertification class. We used image interpretation and archaeological survey to map the traditional irrigation systems which supply the oasis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference77 articles.

1. Sims, N. et al. Good Practice Guidance. SDG Indicator 15.3. 1, Proportion of Land That Is Degraded Over Total Land Area. Version 2.0. United Nations Convention to Combat Desertification https://www.unccd.int/sites/default/files/relevant-links/2021-03/Indicator_15.3.1_GPG_v2_29Mar_Advanced-version.pdf (Bonn, Germany, 2021).

2. Gibbs, H. & Salmon, J. M. Mapping the world’s degraded lands. Appl. Geogr. 57, 12–21 (2015).

3. Pörtner, H.-O. et al. Climate change 2022: Impacts, adaptation and vulnerability https://www.ipcc.ch/report/ar6/wg2/ (IPCC, Geneva, Switzerland, 2022).

4. Mirzabaev, A. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds D.C. Roberts H.-O. Pörtner, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, & S. Löschke S. Langsdorf, V. Möller, A. Okem, B. Rama) pp. 2195–2231 (Cambridge University Press, 2022).

5. Lightfoot, D. R. Moroccan khettara: Traditional irrigation and progressive desiccation. Geoforum 27, 261–273 (1996).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning-based detection of qanat underground water distribution systems using HEXAGON spy satellite imagery;Journal of Archaeological Science;2024-11

2. A high-precision oasis dataset for China from remote sensing images;Scientific Data;2024-07-02

3. Detecting Desertification in Southern Morocco Using a Multi-Sensor, Random Forest Approach;2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS);2024-04-15

4. Utilising Declassified Cold War Satellite Imagery (KH-9 Hexagon) for Remote Sensing of Historic Hydraulic Management Features in North Africa;2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS);2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3