Identification of Alfalfa SPL gene family and expression analysis under biotic and abiotic stresses

Author:

Wang Yizhen,Ruan Qian,Zhu Xiaolin,Wang Baoqiang,Wei Bochuang,Wei Xiaohong

Abstract

AbstractThe SQUAMOSA promoter binding-like protein (SPL) is a specific transcription factor that affects plant growth and development. The SPL gene family has been explored in various plants, but information about these genes in alfalfa is limited. This study, based on the whole genome data of alfalfa SPL, the fundamental physicochemical properties, phylogenetic evolution, gene structure, cis-acting elements, and gene expression of members of the MsSPL gene family were analyzed by bioinformatics methods. We identified 82 SPL sequences in the alfalfa, which were annotated into 23 genes, including 7 (30.43%) genes with four alleles, 10 (43.47%) with three, 3 (13.04%) with two, 3 (13.04%) with one allele. These SPL genes were divided into six groups, that are constructed from A. thaliana, M. truncatula and alfalfa. Chromosomal localization of the identified SPL genes showed arbitary distribution. The subcellular localization predictions showed that all MsSPL proteins were located in the nucleus. A total of 71 pairs of duplicated genes were identified, and segmental duplication mainly contributed to the expansion of the MsSPL gene family. Analysis of the Ka/Ks ratios indicated that paralogs of the MsSPL gene family principally underwent purifying selection. Protein–protein interaction analysis of MsSPL proteins were performed to predict their roles in potential regulatory networks. Twelve cis-acting elements including phytohormone and stress elements were detected in the regions of MsSPL genes. We further analyzed that the MsSPLs had apparent responses to abiotic stresses such as drought and salt and the biotic stress of methyl jasmonate. These results provide comprehensive information on the MsSPL gene family in alfalfa and lay a solid foundation for elucidating the biological functions of MsSPLs. This study also provides valuable on the regulation mechanism and function of MsSPLs in response to biotic and abiotic stresses.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3