An objective measurement approach to quantify the perceived distortions of spectacle lenses

Author:

Sauer Yannick,Künstle David-Elias,Wichmann Felix A.,Wahl Siegfried

Abstract

AbstractThe eye’s natural aging influences our ability to focus on close objects. Without optical correction, all adults will suffer from blurry close vision starting in their 40s. In effect, different optical corrections are necessary for near and far vision. Current state-of-the-art glasses offer a gradual change of correction across the field of view for any distance—using Progressive Addition Lenses (PALs). However, an inevitable side effect of PALs is geometric distortion, which causes the swim effect, a phenomenon of unstable perception of the environment leading to discomfort for many wearers. Unfortunately, little is known about the relationship between lens distortions and their perceptual effects, that is, between the complex physical distortions on the one hand and their subjective severity on the other. We show that perceived distortion can be measured as a psychophysical scaling function using a VR experiment with accurately simulated PAL distortions. Despite the multi-dimensional space of physical distortions, the measured perception is well represented as a 1D scaling function; distortions are perceived less with negative far correction, suggesting an advantage for short-sighted people. Beyond that, our results successfully demonstrate that psychophysical scaling with ordinal embedding methods can investigate complex perceptual phenomena like lens distortions that affect geometry, stereo, and motion perception. Our approach provides a new perspective on lens design based on modeling visual processing that could be applied beyond distortions. We anticipate that future PAL designs could be improved using our method to minimize subjectively discomforting distortions rather than merely optimizing physical parameters.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Universitätsklinikum Tübingen

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Third-order smoothness metric to characterize progressive addition lenses;Journal of the Optical Society of America A;2024-07-22

2. cblearn: Comparison-based Machine Learning in Python;Journal of Open Source Software;2024-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3