Non-linear rheology reveals the importance of elasticity in meat and meat analogues

Author:

Schreuders Floor K. G.,Sagis Leonard M. C.,Bodnár Igor,Boom Remko M.,van der Goot Atze Jan

Abstract

AbstractThe interest in plant-based meat analogues as an alternative to meat is currently growing. Rheological benchmarking is used to reveal how closely meat analogues resemble the original meat products. Texture maps and dissipation colour schemes were used to reveal similarities in and differences between rheological responses of meat and meat analogues (especially chicken analogues). Under heating, meat analogues differ in terms of their lower elasticity compared with heated meat. The changes caused by heating meat and meat analogues were different as well. Heating of meat resulted in a tougher and more elastic material, while heating has a minor effect on meat analogues. Future developments should therefore focus on routes to create more elasticity and possibly allow heating effects on texture to mimic meat characteristics even better.

Funder

This research is part of the project PlantPromise, which is co-financed by Top Consortium for Knowledge and Innovation Agri & Food by the Dutch Ministry of Economic Affairs;

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3