Revisiting the standard for modeling the spread of infectious diseases

Author:

Nikolaou MichaelORCID

Abstract

AbstractThe COVID-19 epidemic brought to the forefront the value of mathematical modelling for infectious diseases as a guide to help manage a formidable challenge for human health. A standard dynamic model widely used for a spreading epidemic separates a population into compartments—each comprising individuals at a similar stage before, during, or after infection—and keeps track of the population fraction in each compartment over time, by balancing compartment loading, discharge, and accumulation rates. The standard model provides valuable insight into when an epidemic spreads or what fraction of a population will have been infected by the epidemic’s end. A subtle issue, however, with that model, is that it may misrepresent the peak of the infectious fraction of a population, the time to reach that peak, or the rate at which an epidemic spreads. This may compromise the model’s usability for tasks such as “Flattening the Curve” or other interventions for epidemic management. Here we develop an extension of the standard model’s structure, which retains the simplicity and insights of the standard model while avoiding the misrepresentation issues mentioned above. The proposed model relies on replacing a module of the standard model by a module resulting from Padé approximation in the Laplace domain. The Padé-approximation module would also be suitable for incorporation in the wide array of standard model variants used in epidemiology. This warrants a re-examination of the subject and could potentially impact model-based management of epidemics, development of software tools for practicing epidemiologists, and related educational resources.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3