Author:
Yoshimura Yuko,Kikuchi Mitsuru,Saito Daisuke N.,Hirosawa Tetsu,Takahashi Tetsuya,Munesue Toshio,Kosaka Hirotaka,Naito Nobushige,Ouchi Yasuomi,Minabe Yoshio
Abstract
AbstractImpairment in verbal communication abilities has been reported in autism spectrum disorder (ASD). Dysfunction of the serotonergic system has also been reported in ASD. However, it is still unknown how the brain serotonergic system relates to impairment in verbal communication abilities in individuals with ASD. In the present study, we investigated the correlation between brain serotonergic condition and brain sensitivity to paralinguistic stimuli (i.e., amplitude in the human voice prosodic change-evoked mismatch field) measured by magnetoencephalography (MEG) or verbal ability in 10 adults with ASD. To estimate the brain serotonergic condition, we measured the serotonin transporter nondisplaceable binding potential cerebrum-wide using positron emission tomography with [11C]N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ([11C] DASB). The results demonstrated a significant positive correlation between brain activity to paralinguistic stimuli and brain serotonin transporter binding potential in the left lingual gyrus, left fusiform gyrus and left calcarine cortex. In addition, there were significant positive correlations between verbal ability and serotonergic condition in the right anterior insula, right putamen and right central operculum. These results suggested that the occipital cortex is implicated in recognition of the prosodic change in ASD, whereas the right insula-involved serotonergic system is important in nurturing verbal function in ASD.Trial registration: UMIN000011077.
Funder
Japan Society for the Promotion of Science
Japan Science and Technology Agency
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献