EEG-based epileptic seizure detection using binary dragonfly algorithm and deep neural network

Author:

Yogarajan G.,Alsubaie Najah,Rajasekaran G.,Revathi T.,Alqahtani Mohammed S.,Abbas Mohamed,Alshahrani Madshush M.,Soufiene Ben Othman

Abstract

AbstractElectroencephalogram (EEG) is one of the most common methods used for seizure detection as it records the electrical activity of the brain. Symmetry and asymmetry of EEG signals can be used as indicators of epileptic seizures. Normally, EEG signals are symmetrical in nature, with similar patterns on both sides of the brain. However, during a seizure, there may be a sudden increase in the electrical activity in one hemisphere of the brain, causing asymmetry in the EEG signal. In patients with epilepsy, interictal EEG may show asymmetric spikes or sharp waves, indicating the presence of epileptic activity. Therefore, the detection of symmetry/asymmetry in EEG signals can be used as a useful tool in the diagnosis and management of epilepsy. However, it should be noted that EEG findings should always be interpreted in conjunction with the patient's clinical history and other diagnostic tests. In this paper, we propose an EEG-based improved automatic seizure detection system using a Deep neural network (DNN) and Binary dragonfly algorithm (BDFA). The DNN model learns the characteristics of the EEG signals through nine different statistical and Hjorth parameters extracted from various levels of decomposed signals obtained by using the Stationary Wavelet Transform. Next, the extracted features were reduced using the BDFA which helps to train DNN faster and improve its performance. The results show that the extracted features help to differentiate the normal, interictal, and ictal signals effectively with 100% accuracy, sensitivity, specificity, and F1 score with a 13% selected feature subset when compared to the existing approaches.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3