Author:
López-Pintado Dunia,López-Pintado Sara,García-Milán Iván,Yao Zonghui
Abstract
AbstractThe spread of a disease, product or idea in a population is often hard to predict. We tend to observe one or few realizations of the contagion process and therefore limited information can be obtained for anticipating future similar events. The stochastic nature of contagion generates unpredictable outcomes throughout the whole course of the dynamics. This might lead to important inaccuracies in the predictions and to the over or under-reaction of policymakers, who tend to anticipate the average behavior. Through an extensive simulation study, we analyze properties of the contagion process, focusing on its unpredictability or uncertainty, and exploiting the functional nature of the data. In particular, we define a novel non-parametric measure of variance based on weighted depth-based central regions. We apply this methodology to the susceptible-infected-susceptible epidemiological model and small-world networks. We find that maximum uncertainty is attained at the epidemic threshold. The density of the network and the contagiousness of the process have a strong and complementary effect on the uncertainty of contagion, whereas only a mild effect of the network’s randomness structure is observed.
Funder
Ministerio de Ciencias, Innovación y Universidades de España
National Institutes of Health
National Science Foundation
Publisher
Springer Science and Business Media LLC