Multiband terahertz metamaterial perfect absorber for microorganisms detection

Author:

Bhati Ruchi,Malik Anil K

Abstract

AbstractWe report a multi-resonant terahertz (THz) metamaterial perfect absorber (MPA)-based biosensor in the working frequency range of $$0 - 3.8 THz$$ 0 - 3.8 T H z for sensing of microorganisms (such as fungi, yeast) and wheat pesticides. Nearly $$100\%$$ 100 % absorption is realized at $$f_1= 1.7THz, f_2= 2.8THz, f_3=3.2THz,$$ f 1 = 1.7 T H z , f 2 = 2.8 T H z , f 3 = 3.2 T H z , and $$f_4=3.5THz$$ f 4 = 3.5 T H z . We designed our THz MPA sensor making resonators’ gap area compatible with the microorganisms’ size. To obtain optimum performance of the MPA, a mapping of amplitudes and shifts in the absorption resonance peaks with different structural parameters of the resonators is carried out. A very high-frequency shift is obtained for microorganisms such as Penicillium chrysogenum (fungi), yeast, and pesticides (Imidacloprid, N, N-Diethyldithiocarbamate sodium salt trihydrate, Daminozide, N, N-Diethyldithiocarbamate sodium salt hydrate, and Dicofol). An equivalent circuit model using Advance Design System (ADS) software is developed. The calculated results through the model show similar trends as obtained in the simulations using CST. Investigations of the effect of incidence angle of THz wave on the absorption spectra of the MPA are also carried out. It is found that incidence angle does not impact the stability of the lower resonance absorption peak (1.79THz). Due to the wide working frequency range, the proposed sensor is extremely suitable for the detection of all range of pesticides because their specific absorption fingerprint lies in the frequency range of 0–3.8THz. We believe that our sensor could be a potential detection tool for detecting pesticide residues in agriculture and food products. The THz MPA-based biosensor is capable of detecting a very small change in the effective dielectric constant of the MPA environment. Therefore, it can also offer huge opportunities in label-free biosensing for future biomedical applications.

Funder

CSIR - MHRD, Government of INdia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3