Phytosynthesis and characterization of tin-oxide nanoparticles (SnO2-NPs) from Croton macrostachyus leaf extract and its application under visible light photocatalytic activities

Author:

Tasisa Yonas Etafa,Sarma Tridib Kumar,Sahu Tarun Kumar,Krishnaraj Ramaswamy

Abstract

AbstractNanotechnology is rapidly becoming more and more important in today's technological world as the need for industry increases with human well-being. In this study, we synthesized SnO2 nanoparticles (NPs) using an environmentally friendly method or green method from Croton macrostachyus leaf extract, leading to the transformation of UV absorbance to visible absorbance by reducing the band gap energy. The products underwent UV, FTIR, XRD, SEM, EDX, XPS, BET, and DLS for characterization. Characterization via UV–Vis spectroscopy confirmed the shift in absorbance towards the visible spectrum, indicating the potential for enhanced photocatalytic activity under visible light irradiation. The energy band gap for as-synthesized nanoparticles was 3.03 eV, 2.71 eV, 2.61 eV, and 2.41 eV for the 1:1, 1:2, 1:3, and 1:4 sample ratios, respectively. The average crystal size of 32.18 nm and very fine flakes with tiny agglomerate structures of nanoparticles was obtained. The photocatalytic activity of the green-synthesized SnO2 nanoparticles was explored under visible light irradiation for the degradation of rhodamine B (RhB) and methylene blue (MB), which were widespread fabric pollutants. It was finally confirmed that the prepared NPs were actively used for photocatalytic degradation. Our results suggest the promising application of these green-synthesized SnO2 NPs as efficient photocatalysts for environmental remediation with low energy consumption compared to other light-driven processes. The radical scavenging experiment proved that hydroxyl radicals (_OH) are the predominant species in the reaction kinetics of both pollutant dyes under visible light degradation.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3