Metal deposition and shape reproduction at biological temperatures on cell-level samples

Author:

Takemura Kenshin,Motomura Taisei,Iwasaki Wataru,Matsuda Naoki

Abstract

AbstractThe use of metal deposition has been limited to a limited number of applicable samples due to the increased temperature caused by accelerated electron impact on the substrate surface. The surfaces of various biological samples have a nanoscale structure with specific properties, which have been simulated in numerous studies. However, no examples of nano/microscale reproductions of biological surface features have used moulds. In this study, a mould that imitates the surface shape of a cellular-level biological material was fabricated, for the first time, and the shape was successfully reproduced using the mould. Al thin films were deposited on bovine sperm using magnetron sputtering without thermal denaturation with a cathode operating at a biological temperature. It is difficult to deposit films used as metal coatings on pre-treated biological materials at temperatures below 40 °C during evaporation. The Al thin film was peeled off and used as a mould to reproduce the shape of the sperm with high accuracy using a polymer. The results of this study represent a major innovation in reproducible biomimetic moulding technology, demonstrating biological temperature sputtering. We expect our non-destructive metal deposition and metal nano-moulding methods for biological samples to be the basis for the effective utilization of various biological structures.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3