Experimental evidence for snails dispersing tardigrades based on Milnesium inceptum and Cepaea nemoralis species

Author:

Książkiewicz Zofia,Roszkowska Milena

Abstract

AbstractDispersal abilities in animals contribute to their local genetic variability and species persistence. However, the mechanisms facilitating a short-distance migration of small organisms remain underexplored. In this study we experimentally tested the role of land snails for a fine-scale transmission of tardigrades. We also check the ecological relationship between these two groups, by testing the impact of snail's mucus on tardigrades in anhydrobiosis. All the experiments were conducted under laboratory conditions. As model organisms, we used a tardigrade species Milnesium inceptum and a snail species Cepaea nemoralis. The selection of the experimental animals was dictated by their co-occurrence in natural habitats and similar atmospheric conditions required for them to remain active. Results of our experiments support the assumption that snails may transfer active tardigrades for short distances. On the other hand, the effect of the snails mucus on tardigrade recovery to active life after anhydrobiosis was negative. Death rates of tardigrades in anhydrobiosis (tun) were higher when affected by mucus compared to mucus-free tuns.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3