Nonmechanical parfocal and autofocus features based on wave propagation distribution in lensfree holographic microscopy

Author:

Dharmawan Agus Budi,Mariana Shinta,Scholz Gregor,Hörmann Philipp,Schulze Torben,Triyana Kuwat,Garcés-Schröder Mayra,Rustenbeck Ingo,Hiller Karsten,Wasisto Hutomo Suryo,Waag Andreas

Abstract

AbstractPerforming long-term cell observations is a non-trivial task for conventional optical microscopy, since it is usually not compatible with environments of an incubator and its temperature and humidity requirements. Lensless holographic microscopy, being entirely based on semiconductor chips without lenses and without any moving parts, has proven to be a very interesting alternative to conventional microscopy. Here, we report on the integration of a computational parfocal feature, which operates based on wave propagation distribution analysis, to perform a fast autofocusing process. This unique non-mechanical focusing approach was implemented to keep the imaged object staying in-focus during continuous long-term and real-time recordings. A light-emitting diode (LED) combined with pinhole setup was used to realize a point light source, leading to a resolution down to 2.76 μm. Our approach delivers not only in-focus sharp images of dynamic cells, but also three-dimensional (3D) information on their (x, y, z)-positions. System reliability tests were conducted inside a sealed incubator to monitor cultures of three different biological living cells (i.e., MIN6, neuroblastoma (SH-SY5Y), and Prorocentrum minimum). Altogether, this autofocusing framework enables new opportunities for highly integrated microscopic imaging and dynamic tracking of moving objects in harsh environments with large sample areas.

Funder

BUDI Kemenristekdikti-LPDP

Lower Saxony Ministry for Science and Culture

European Union’s Horizon 2020 research and innovation program

Deutsche Forschungsgemeinschaft

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3